Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 12(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38535932

RESUMEN

The leaching of herbicides into the soil is essential to control germinating seeds and parts of vegetative weeds. However, herbicide transportation to deeper soil layers can result in groundwater contamination and, consequently, environmental issues. In this research, our objective was to investigate differences in herbicide leaching between commercial formulations and analytical standards using three different soils. Leaching experiments were carried out for diuron, hexazinone, and sulfometuron-methyl herbicides isolated and in binary and ternary mixtures. The herbicide residue quantification was performed by ultra-high-performance liquid chromatography coupled to a mass spectrometer (LC-MS/MS). Diuron had less mobility in soils and was retained in the most superficial layers. Hexazinone and sulfometuron-methyl were more mobile and leached into deeper layers. The leaching process was more intense for hexazinone and sulfometuron-methyl. The additives present in the commercial formulation favored the leaching in soils of diuron, hexazinone, and sulfometuron-methyl herbicides isolated and mixture compared to the analytical standard. This fact highlights the importance of considering these effects for the positioning of herbicides in the field to increase the efficiency of weed control and minimize the potential for environmental contamination.

2.
Environ Sci Pollut Res Int ; 29(10): 15127-15143, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34628609

RESUMEN

Herbicide mixtures have often been used to control weeds in crops worldwide, but the behavior of these mixtures in the environment is still poorly understood. Laboratory and greenhouse tests have been conducted to study the interaction of the herbicides diuron, hexazinone, and sulfometuron-methyl which have been applied alone and in binary and ternary mixtures in the processes of sorption, desorption, half-life, and leaching in the soil. A new index of the risk of leaching of these herbicides has also been proposed. The sorption and desorption study has been carried out by the batch equilibrium method. The dissipation of the herbicides has been evaluated for 180 days to determine the half-life (t1/2). The leaching tests have been carried out on soil columns. The herbicides isolated and in mixtures have been quantified using ultra-high performance liquid chromatography coupled to the mass spectrometer. Diuron, hexazinone, and sulfometuron-methyl in binary and ternary mixtures have less sorption capacity and greater desorption when compared to these isolated herbicides. Dissipation of diuron alone is slower, with a half-life (t1/2) = 101 days compared to mixtures (t1/2 between 44 and 66 days). For hexazinone and sulfometuron-methyl, the dissipation rate is lower in mixtures (t1/2 over 26 and 16 days), with a more pronounced effect in mixtures with the presence of diuron (t1/2 = 47 and 56 and 17 and 22 days). The binary and ternary mixtures of diuron, hexazinone, and sulfometuron-methyl promoted more significant transport in depth (with the three herbicides quantified to depth P4, P7, and P7, respectively) compared to the application of these isolated herbicides (quantified to depth P2, P4, and P5). Considering the herbicides' desorption and solubility, the new index proposed to estimate the leaching potential allowed a more rigorous assessment concerning the risk of leaching these pesticides, with hexazinone and sulfometuron-methyl presenting a higher risk of contamination of groundwater.


Asunto(s)
Herbicidas , Plaguicidas , Contaminantes del Suelo , Adsorción , Diurona , Herbicidas/análisis , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...